Compact Lie groups Simple Lie group
1 compact lie groups
1.1 series
1.2 b series
1.2.1 c series
1.3 d series
1.4 exceptional cases
compact lie groups
every simple lie algebra has unique real form corresponding centerless lie group compact. turns out connected lie group in these cases compact. compact lie groups have particularly tractable representation theory because of peter-weyl theorem. simple complex lie algebras, centerless compact lie groups classified dynkin diagrams (first classified wilhelm killing , Élie cartan).
for infinite (a, b, c, d) series of dynkin diagrams, connected compact lie group associated each dynkin diagram can explicitly described matrix group, corresponding centerless compact lie group described quotient subgroup of scalar matrices.
a series
a1, a2, ...
ar has associated connected compact group special unitary group, su(r + 1) , associated centerless compact group projective unitary group pu(r + 1).
b series
b2, b3, ...
br has associated centerless compact groups odd special orthogonal groups, so(2r + 1). group not connected however: universal (double) cover spin group.
c series
c3, c4, ...
cr has associated connected group group of unitary symplectic matrices, sp(r) , associated centerless group lie group psp(r) = sp(r)/{i, -i} of projective unitary symplectic matrices.
d series
d4, d5, ...
dr has associated compact group special orthogonal groups, so(2r) , associated centerless compact group projective special orthogonal group pso(2r) = so(2r)/{i, -i}. b series, so(2r) not connected; universal cover again spin group, latter again has center (cf. article).
the diagram d2 2 isolated nodes, same a1 ∪ a1, , coincidence corresponds covering map homomorphism su(2) × su(2) so(4) given quaternion multiplication; see quaternions , spatial rotation. so(4) not simple group. also, diagram d3 same a3, corresponding covering map homomorphism su(4) so(6).
exceptional cases
in addition 4 families above, there 5 so-called exceptional dynkin diagrams g2, f4, e6, e7, , e8. of these have associated connected , centerless compact groups, although these not easy describe in terms of matrix groups infinite series ai, bi, ci , di above.
see e7½.
Comments
Post a Comment