Structure sheaf Affine variety
proof: inclusion ⊃ clear. opposite, let g in left-hand side ,
j
=
{
h
∈
a
|
h
g
∈
a
}
{\displaystyle j=\{h\in a|hg\in a\}}
, ideal. if x in d(f), then, since g regular near x, there open affine neighborhood d(h) of x such
g
∈
k
[
d
(
h
)
]
=
a
[
h
−
1
]
{\displaystyle g\in k[d(h)]=a[h^{-1}]}
; is, h g in , x not in v(j). in other words,
v
(
j
)
⊂
{
x
|
f
(
x
)
=
0
}
{\displaystyle v(j)\subset \{x|f(x)=0\}}
, hilbert nullstellensatz implies f in radical of j; i.e.,
f
n
g
∈
a
{\displaystyle f^{n}g\in a}
.
◻
{\displaystyle \square }
the claim, first of all, implies x locally ringed space since
o
x
,
x
=
lim
→
f
(
x
)
≠
0
a
[
f
−
1
]
=
a
m
x
{\displaystyle {\mathcal {o}}_{x,x}=\varinjlim _{f(x)\neq 0}a[f^{-1}]=a_{{\mathfrak {m}}_{x}}}
where
m
x
=
{
f
∈
a
|
f
(
x
)
=
0
}
{\displaystyle {\mathfrak {m}}_{x}=\{f\in a|f(x)=0\}}
. secondly, claim implies
o
x
{\displaystyle {\mathcal {o}}_{x}}
sheaf; indeed, says if function regular (pointwise) on d(f), must in coordinate ring of d(f); is, regular-ness can patched together.
hence,
(
x
,
o
x
)
{\displaystyle (x,{\mathcal {o}}_{x})}
locally ringed space.
Comments
Post a Comment